Consumption Function, Aggregate Expenditures and Investment ${ }^{1}$ In-Class Problem ${ }^{2}$

Let's assume we have an economy in which we observe the following values for consumption, investment, government spending, exports and imports:

- $C=\$ 2,000$ billion ($\$ 2$ trillion)
- $I=\$ 1,000$ billion ($\$ 1$ trillion)
- G, X and $I M$ each $=\$ 0$
- $M P C=.8$

1. What is the level of GDP?
$G D P=C+I+G+X-I M=\$ 2,000+\$ 1,000+0=\$ 3,000$ billion $=\$ 3$ trilllion (1)
2. If there is some initial level of consumption equal to $\$ \mathbf{1 0 0}$ billion, what is Y_{D} (disposable income)?

We know that $C=a+\operatorname{MPC}\left(Y_{D}\right)$ and $a=\$ 100$ (some initial level), so we can substitute in the values we have and solve for Y_{D}
$\$ 2,000=\$ 100+(.8)\left(Y_{D}\right)$
$\$ 1,900=(.8)\left(Y_{D}\right)$
$Y_{D}=\$ 2,375$ billion
3. If consumption in a prior period was valued at $\$ 1,950$ billion, what would that tell us about disposable income in that same period?
We know that $\frac{\Delta C}{\Delta Y_{D}}=M P C$, and since we have values for $\triangle C$ and MPC we can solve for ΔY_{D}

$$
\frac{\Delta C}{\Delta Y_{D}}=M P C
$$

$$
\frac{\$ 2,000-1950}{\Delta Y_{D}}=.8
$$

[^0]$\Delta Y_{D}=\frac{\$ 50}{.8}=\$ 62.5$ billion
Since we know that Y_{D} in the current period is $\$ 2,375$ billion, we now know that Y_{D} in the prior period must have been $\$ 2,312.5(\$ 2,375-\$ 62.5=\$ 2,312.5)$
4. If inventories unexpectedly grew by $\$ 150$ billion between the two periods, what would be the level of planned aggregate expenditures, $A E_{p}$?

We think about an unexpected (unplanned) change in inventory as being unplanned investment or (lu)

Recall that
$I=I_{P}+I_{U}$ so $I_{P}=I-I_{U}$
Now substitute in values that we know
$\$ 1,000-\$ 150=\$ 850=I_{P}$
$A E_{P}=C+I_{P}$
Substitute in known values
$A E_{P}=\$ 2,000+\$ 850=\$ 2,850$
5. Let's assume that investment in the prior period was equal to 95% of the planned investment in this period, what does this tell us about GDP in the prior period?

Recall that $\Delta G D P=\Delta C+\Delta I$
We know that $\Delta C=\$ 2,000-\$ 1,950=\$ 50$
And we're told above that the prior period I_{P} is 95% of this period's I_{P}, which we calculated at $\$ 850$ billion, so $\Delta I_{P}=.05 * \$ 850=\$ 42.50$ and $\Delta I_{U}=150$ which tells us that $\Delta I=\$ 192.50$

So we know that $\Delta G D P=\Delta C+\Delta I=\$ 50+\$ 192.50=\$ 242.50$
And that tells us that GDP in the prior period was $\$ 100$ less than it is in this period so

$$
G D P_{\text {prior }}=G D P-\$ 3,000-\$ 242.50=\$ 2,757.50
$$

[^0]: ${ }^{1}$ This In-Class Problem is intended to present an abbreviated discussion of the included economic concepts and is not intended to be a full or complete representation of them or the underlying economic foundations from which they are built.
 ${ }^{2}$ This problem was developed by Rick Haskell (rick.haskell@utah.edu), Ph.D. Student, Department of Economics, College of Social and Behavioral Sciences, The University of Utah, Salt Lake City, Utah (2014).

