Consumption Function, Aggregate Expenditures and Investment¹ In-Class Problem²

Let's assume we have an economy in which we observe the following values for consumption, investment, government spending, exports and imports:

- *C* = *\$2,000 billion (\$2 trillion)*
- *I* = \$1,000 billion (\$1 trillion)
- *G*, *X* and *IM* each = \$0
- MPC = .8

1. What is the level of GDP?

GDP = C + I + G + X - IM =\$2,000 + \$1,000 + 0 = \$3,000 billion = \$3 trillion (1)

2. If there is some initial level of consumption equal to \$100 billion, what is Y_D (disposable income)?

We know that $C = a + MPC(Y_D)$ and a = \$100 (some initial level), so we can substitute in the values we have and solve for Y_D

 $$2,000 = $100 + (.8)(Y_D)$ $$1,900 = (.8)(Y_D)$ $Y_D = $2,375 \ billion$

3. If consumption in a prior period was valued at \$1,950 billion, what would that tell us about disposable income in that same period?

We know that $\frac{\Delta C}{\Delta Y_{\rm D}} = MPC$, and since we have values for ΔC and MPC we can solve for $\Delta Y_{\rm D}$

$$\frac{\Delta C}{\Delta Y_D} = MPC$$
$$\frac{\$2,000 - 1950}{\Delta Y_D} = .8$$

¹ This In-Class Problem is intended to present an abbreviated discussion of the included economic concepts and is not intended to be a full or complete representation of them or the underlying economic foundations from which they are built.

² This problem was developed by Rick Haskell (rick.haskell@utah.edu), Ph.D. Student, Department of Economics, College of Social and Behavioral Sciences, The University of Utah, Salt Lake City, Utah (2014).

$$\Delta Y_D = \frac{\$50}{.8} = \$62.5$$
 billion

Since we know that Y_D in the current period is \$2,375 billion, we now know that Y_D in the prior period must have been \$2,312.5 (\$2,375 - \$62.5 = \$2,312.5)

4. If inventories unexpectedly grew by \$150 billion between the two periods, what would be the level of planned aggregate expenditures, AE_P?

We think about an unexpected (unplanned) change in inventory as being unplanned investment or (I_{U})

Recall that

 $I = I_P + I_U$ so $I_P = I - I_U$

Now substitute in values that we know

 $1,000 - 150 = 850 = I_P$

 $AE_P = C + I_P$

Substitute in known values

 $AE_P =$ \$2,000 + \$850 = \$2,850

5. Let's assume that investment in the prior period was equal to 95% of the planned investment in this period, what does this tell us about GDP in the prior period?

Recall that $\Delta GDP = \Delta C + \Delta I$

We know that $\Delta C = $2,000 - $1,950 = 50

And we're told above that the prior period I_P is 95% of this period's I_P, which we calculated at \$850 billion, so $\Delta I_P = .05 * \$850 = \42.50 and $\Delta I_U = 150$ which tells us that $\Delta I = \$192.50$

So we know that $\triangle GDP = \triangle C + \triangle I = $50 + $192.50 = 242.50

And that tells us that GDP in the prior period was \$100 less than it is in this period so

 $GDP_{prior} = GDP - \$3,000 - \$242.50 = \$2,757.50$