Corporate Finance ${ }^{1}$
 Quick Sheet ${ }^{2}$

Finance Terms and Outcomes

CAPM - Capital Asset Pricing Model : $\mathrm{R}_{\mathrm{E}}=\mathrm{R}_{\mathrm{F}}+\beta\left(\mathrm{R}_{\mathrm{M}}-\mathrm{R}_{\mathrm{F}}\right)$
$\mathrm{R}_{\mathrm{F}}=$ risk free market return; this value may be a current 2 or 10 year US Treasury rate
$R_{M}=$ average market return for equity for industry in which the subject firm resides
$\beta=$ risk adjustment for firm compared to the industry average for the firm such that $\beta=1$ indicates firm risk/volatility level is equal to that of the average firm in the industry

CFFA $_{1}=$ OCF - NCS $-\Delta N W C$
OCF = EBIT + Depreciation \& Amortization - Taxes
NCS $=$ FA $1-$ FA $0+$ Depreciation \& Amortization
NWC $=$ Current Assets - Current Liabilities $=\mathbf{C A}_{\mathbf{i}}-\mathbf{C L}_{\mathbf{i}}$
$\Delta N W C=\left(C A_{1}-L_{1}\right)-\left(C A_{0}-C_{0}\right)$
CFFA $_{1}=$ CFFA $_{2}=$ CF $_{C R}+$ CF $_{\text {SH }}=$ Cash Flow to Creditors + Cash Flow to Shareholders
$\mathrm{CF}_{\mathrm{CR}}=$ Interest Paid - Net New Borrowing $=$ Interest Paid $-\left(\right.$ Long Term Debt $\boldsymbol{L}_{1}-$ Long Term Debt $\left.{ }_{0}\right)$

CFsh $_{\text {sh }}=$ Dividends Paid - Net New Equity
COGS $=$ Cost of Goods Sold $=$ material inputs to those items the firm produces or sells

When the firm produces a tangible product COGS will include production-specific labor. When the firm provides a service COGS is sometimes thought of as that labor directly related to the provision of service, but in most cases service firms do not calculate COGS.

EBIT = Earnings before interest and taxes
EBITDA = Earnings before interest, taxes, depreciation and amortization

EBIT is often referred to as Operating Income

EPS = Earnings Per Share $=($ Net Income - Preferred Dividends Paid $) /$ Common Shares Outstanding
EV $=$ Enterprise Value $=$ Mkt Cap Common + Mkt Cap Preferred + Mkt Value Long-Term Debt - Cash \& Equivalents when market value of long-term debt is not available, book value is often substituted

FCF = Free Cash Flow

$$
\begin{array}{ll}
\mathrm{FCF}=\text { NOPLAT }+ \text { Depreciation }-\triangle N W C-N C S & \text { These two versions of FCF should } \\
\mathrm{FCF}=\text { NOPLAT }- \text { Net Investment } & \text { result in the same value } \\
\text { FCF }=\text { NOPLAT }\left(1-\frac{g}{\text { ROIC }}\right) & \text { Often yields a different value than those above. }
\end{array}
$$

[^0]\[

$$
\begin{aligned}
& \mathbf{I C}=\text { Invested Capital }=\text { Fixed Assets }+ \text { Net Working Capital } \\
& =\text { Total Equity }+ \text { Total Long Term Debt } \\
& \mathbf{I R}=\text { Investment } \text { Rate }=\frac{\text { Net Investment }}{\text { NOPLAT }} \\
& \text { Market Value Bonds }=C \frac{\left[1-\frac{1}{(1+Y T M)^{N}}\right]}{Y T M}+\frac{F}{(1+Y T M)^{N}} \\
& C=\frac{F * \text { Coupon Rate }}{\text { Periods per year }} \\
& F=\text { Face Value } \\
& \text { YTM }=\frac{\text { Current Market Yield }}{\text { Periods per year }} \\
& N=\text { Years to Maturity } x \text { Periods Per Year }=\text { Periods to Maturity } \\
& \text { NCS }=\text { Net Capital Spending }=F A_{1}-F A_{0}+\text { Dep } \\
& \text { Net Inv = Net Investment }=\Delta I C=I C_{1}-I C_{0} \\
& =\Delta F A+\Delta N W C \\
& =\left(F A_{1}+N W C_{1}\right)-\left(F A_{0}+N W C_{0}\right) \\
& =\text { NCS }- \text { Dep }+\Delta \text { NWC } \\
& \text { NI }=\text { Net Income }=\text { EBIT }- \text { Interest Paid }- \text { Taxes Paid } \\
& \text { NOPAT }=\text { Net Operating Profit Less Taxes }=\text { EBIT }- \text { Taxes Paid }
\end{aligned}
$$
\]

NOPLAT $=$ Net Operating Profits Less Adjusted Taxes $=E B I T *(1-T)$
PPS $=$ Price Per Share $=$ Market Price Per Share
RE = Retained Earnings $=$ Net Income - Dividends Paid
TA = Total Assets = Current Assets + Fixed Assets (the entirety of the left hand side of the balance sheet)

In this case T is equal to the tax rate on the firm's EBIT were it to be subjected to

Retained Earnings are found on the Income Statement, while Accumulated Retained Earnings are found on the Balance Sheet

TE = Total Equity = Book Value of All Outstanding Equity Shares + Retained Earnings

WACC $=$ Weighted Average Cost of Capital $=\left(\frac{E}{V} x R_{E}\right)+\left(\frac{P}{V} x R_{P}\right)+\left(\frac{D}{V} x R_{D}\right)\left(1-T_{C}\right)$
$E+P+D=V$ Values of firm's capital structure. Depending on the perspective of the analysis you're conducting, this might be book value based or market value based.

Opportunity cost of Debt (R_{D})

1) $R_{D}=Y T M$ or Current Yield for a similar type (maturity, risk, etc) of long term debt to that held by the subject firm
2) $\mathrm{RD}_{\mathrm{D}}=\frac{\text { Interest }_{t}}{\text { Debt }_{t-1}}$: this may reflect market or book value of debt depending on the data available

Opportunity cost of Preferred Equity (R_{P})

1) $\mathrm{R}_{\mathrm{P}}=\frac{\text { Preferrred Dividends } \text { Paid }_{t}}{\text { Value of Preferred }} 1 \mathrm{l}$: this may reflect market or book value or preferred depending on the data available
2) $R_{P}=$ Dividend Rate of Preferred

Opportunity cost of Common Equity (R_{E})

1) $R_{E}=R_{F}+\beta\left(R_{M}-R_{F}\right)$ This is the CAPM construction and is preferred if the data is available
2) $\mathrm{R}_{\mathrm{E}}=\frac{D_{1}}{P_{0}}+g$: this stems from the Dividend Yield equation $P_{o}=\frac{D_{1}}{r-g}$ in which Modigliani \& Miller suggest that if D_{1} is the dividend for a common stock, the PO is the current price of that stock based on the stock's expected return (r) and long run growth rate of the dividend (g) - as such r, or RE, is the opportunity cost of the common stock.

$$
\begin{aligned}
& \text { Market Value Bonds }=\boldsymbol{C} \frac{\left[1-\frac{1}{(1+Y T M)^{N}}\right]}{\boldsymbol{Y T M}}+\frac{\boldsymbol{F}}{\left(\mathbf{1 + Y T M) ^ { N }}\right.} \\
& \begin{aligned}
C & =\frac{F * \text { Coupon Rate }}{\text { Periods per year }} \\
F & =\text { Face Value } \\
Y T M & =\frac{\text { Current Market Yield }}{\text { Periods per year }} \\
N & =\text { Years to Maturity } x \text { Periods Per Year }=\text { Periods to Maturity }
\end{aligned}
\end{aligned}
$$

Cash Burn/Build and Liquidity Ratios

Cash Build $=$ Revenues $_{1}-\left(\right.$ Accounts $^{\text {Receivables }} 1$ - Accounts Receivableso $)$
Cash Burn $=\left(\right.$ Operating Expenses $1_{1}-$ Dep $^{\prime}$ Am $_{1}+$ Interest Paid $1+$ Taxes Paid $\left._{1}\right)+\left(\right.$ Inventory $_{1}-$ Investory $\left._{0}\right)-($ Current Liabilities $_{1}-$ Current Liabilities 0$)+\left(\right.$ FA $_{1}-$ FA $_{0}+$ Dep\&Am $\left._{1}\right)$

Cash Ratio $=\frac{\text { Cash }}{\text { Current Liabilities }}$
Cash Coverage Ratio (aka Times Interest Earned) $=\frac{\text { EBIT }+ \text { Depreciation \& Amortization }}{\text { Interest Expense }}=\frac{\text { EBITDA }}{\text { Interest Expense }}$
Current Ratio $=\frac{\text { Current Assets }}{\text { Current Liabilities }}$
Quick Ratio $=\frac{\text { Cash }+ \text { Accounts Receivaaaables }}{\text { Current Liabilities }}$
Net Cash Burn = Cash Build - Cash Burn

Comparative Metrics and Ratios

$\mathbf{b}=$ Retention Ratio $=\frac{\mathrm{NI}-\text { Dividends }}{\mathrm{NI}} ; \mathbf{1 - b}=$ Payout Ratio $=\frac{\text { Dividends }}{\mathrm{NI}}$
Capital Intensity Ratio $=\frac{\mathrm{TA}}{\text { Sales }}=\frac{1}{\text { Total Asset Turns }}$
Debt-to-Equity Ratio $=\frac{\text { Total Liabilities }}{\text { Total Equity }}$
Debt Ratio $=\frac{\text { Total Debt }}{\text { Total Assets }}=1-\frac{1}{\text { Equity Multiplier }}$
EM = Equity Multiplier $=\frac{T A}{T E}=1+\frac{\text { Total Debt }}{\text { Total Equity }}$

$$
\begin{aligned}
& \text { Equity Ratio }=\frac{\text { Total Equity }}{\text { Total Assets }} \\
& \text { Equity Turns }=\frac{\text { Total Sales }}{\text { Total Equity }}
\end{aligned}
$$

$\boldsymbol{g}=$ growth rate of the subject cash flow variable

$$
\begin{equation*}
g=\frac{\text { Cash Flow Variable }_{\text {END }}-\text { Cash Flow Variable } \text { BEGINNING }^{\text {Cash Flow Variable Year }} \text { BEGINNING }}{\text { Cas }} \tag{100}
\end{equation*}
$$

$\boldsymbol{g}=I R \times$ ROIC - when \boldsymbol{g} is calculated in this manner it is not likely to be the same as the g calculated above. This form of g is the level of growth the firm should be able to sustain given its current level of ROIC, investment rate, and capitalization.

IGR $=$ Internal Growth Rate $\frac{R O A \times b}{1-(\text { ROA } \times b)}$
LTE $=$ Liabilities to Shareholder Equity $=\frac{\text { Total Liabilities }}{\text { Shareholder Equity }}$
PE Ratio $=$ Price/Earnings Ratio $=$ PPS/EPS
PM $=$ Profit Margin $=\frac{\text { Net Income }}{\text { Sales }} \quad$ The term "Sales" in finance is often used
PPS $=$ Price Per Share $=$ Market Price Per Share
ROA $=$ Return on Assets $=\frac{\boldsymbol{N I}}{\boldsymbol{T A}}$
ROE $=$ Return on Equity $=\frac{N I}{T E}$
ROAdupont $=$ Dupont Identity $=\mathrm{PM}$ * Equity Turns * Equity Ratio $=\frac{N I}{\text { Sales }} x \frac{\text { Sales }}{T E} x \frac{T E}{T A}$
ROEdupont $=$ Dupont Identity $=\mathrm{PM}$ * TAT $^{*} \mathrm{EM}=\frac{N I}{\text { Sales }} x \frac{\text { Sales }}{T A} x \frac{T A}{T E}$
ROIC $=$ Return on Invested Capital $=\frac{\text { NOPLAT }}{\boldsymbol{I C}}$
SGR $=$ Sustainable Growth Rate $=\frac{R O E \times b}{1-(R O E \times b)}$
TIE $=$ Times Interest Earned (aka Cash Coverage Ratio) $=\frac{\text { EBITDA }}{\text { Interest Expense }}$
Total Assets Turns $=$ TAT $=\frac{\text { Sales }}{T A}$
Total Debt Ratio $=\frac{\text { Total Assets-Total Equity }}{\text { Total Assets }}=\frac{\text { Total Debt }}{\text { Total Assets }}$

Conversion Cycles and Turnover Ratios (Rates)

Average Daily COGS $=\frac{\text { COGS }}{365}$
Average Inventory $=\frac{I N V_{\text {beginning }}+I N V_{\text {end }}}{2}$
$\mathbf{C C C}=$ Cash Conversion Cycle = DIO + DSO - DPO
Days' Costs in Payables $=\frac{365}{\text { Payables Turnover }}$

These conversion cycles are represented on an annual basis (365 days per year), but could be easily adjusted to any accounting period

Days' Sales in Inventory $=\frac{365}{\text { Inventory } \text { Turnover }}$
Days' Sales in Receivables $=\frac{365}{\text { Receivables Turnover }}$
DIO $=$ Days Inventory Outstanding $=\frac{\text { Average Inventory }}{\operatorname{COGS} / 365}$
DSO $=$ Days Sales Outstanding $=\frac{\left(A R_{\text {beginning }}+A R_{\text {ending }}\right) / 2}{A_{\text {nnual Revenue } / 365}}$
DPO = Days Payable Outstanding $=\frac{\left(A P_{\text {beginning }}+A P_{\text {ending }}\right) / 2}{\operatorname{COGS} / 365}$
Inventory Turnover $=\frac{\text { coGS }}{\text { Inventory }}$

Same as Inventory to Sales Conversion Period
Same as Sales to Cash Conversion Period

Virtually same as Purchase to Payment Conversion Period
Inventory Turnover $=\frac{\text { cogs }}{\text { Inventory }}$
ISCP $=$ Inventory-to-Sales Conversion Period $=\frac{\text { Average Inventory }}{\text { Avereage Daily } \operatorname{COGS}}$
Payables Turnover $=\frac{C O G S}{A P}$
$\mathbf{P P C P}=$ Purchase-to-Pmt Conversion Period $=\frac{\left(\left(\text { AP }_{\text {beginning }}+\text { Accued }^{\left.\left.\text {Liabilities }_{\text {beginning }}\right)+\left(A P_{\text {end }}+\text { Accued }^{\text {Liabilities }} \text { end }\right)\right) / 2}\right.\right.}{\text { COGS/365 }}$
Receivables Turnover $=\frac{\text { Sales }}{\text { Accounts } \text { Receivable }}$
SCCP $=$ Sale-to-Cash Conversion Period $=\frac{\text { Average } A R}{\text { Net Sales } / 365}$

Market Value Ratios

PE Ratio is typically applied to a firm's common shares after
Price to Earnings (PE) Ratio $=\frac{\text { Common Equity Price Per Share }}{\text { Earnings Per Share }}=\frac{\text { Market Cap of Common Equity Shares }}{\text { Net Income }- \text { Dividends Paid to Preferred }}$
Price to Sales Ratio $=\frac{\text { Common Equity Price Per Share }}{\text { Sales Per Share Common Equity }}$
Market to Book Ratio $=\frac{\text { Market Value Per Equity Share }}{\text { Book Value Per Equity Share }}$
Market to Book Ratio may be considered for
either Common or Preferred Shares separately or the two share types combined
EBITDA Ratio $=\frac{\text { Enterprize Value }}{\text { EBITDA }}$

[^0]: ${ }^{1}$ The Corporate Finance Quick Sheet is intended to present an abbreviated presentation of the included concepts in corporate finance and is not intended to be a full or complete representation of the concepts, models, metrics or the underlying foundations from which they are built. ${ }^{2}$ This material set was provided by Richard Haskell, PhD, Associate Professor of Finance, Bill and Vieve Gore School of Business, Westminster College, Salt Lake City, Utah (2017), rhaskell@westminstercollege.edu.

