Defining Supply and Demand Equations – Private Goods¹ In-Class Problem²

Suppose the US market for Grits is represented by the follow schedule with quantities presented in millions:

Price	Quantity ^{US}	Quantity ^{US}	
\$2	5	12	
\$3	10	10	

a) Provide a completed Supply and Demand Schedules extended to the point where $Quantity_D^{US} = 0$ and $Quantity_S^{US} = 0$.

Price	Quantity ^{US}	Quantity ^{US}	
\$1	0	14	
\$2	5	12	
\$3	10	10	
\$4	15	8	
\$5	20	6	
\$6	25	4	
\$7	30	2	
\$8	35	0	
•			

b) Identify the Inverse Demand and Inverse Supply Equations for this market.

Inverse Supply:	$P = 1 + \frac{1}{5} Q_S^{US}$
Inverse Demand:	$P = 8 - \frac{1}{2} Q_D^{US}$

c) What are the Demand and Supply Equations for this market?

From Inverse Supply: $P = 1 + \frac{1}{5} Q_S^{US}$ we rearrange the equation normalized to Q_S^{US} such that

$$\frac{1}{5} Q_S^{US} = P - 1 \longrightarrow Q_S^{US} = 5P - 5 =$$
 Supply Equation

¹ This primer is intended to present an abbreviated discussion of the included economic concepts and is not intended to be a full or complete representation of them or the underlying economic foundations from which they are built.

² This In-Class Problem was developed by Rick Haskell, Ph.D. Student, Department of Economics, College of Social and Behavioral Sciences, The University of Utah, Salt Lake City, Utah (2014).

From Inverse Demand: $P = 8 - \frac{1}{2} Q_D^{US}$ we rearrange the equation normalized to Q_D^{US} such that $\frac{1}{2} Q_D^{US} = 8 - P \longrightarrow Q_D^{US} = 16 - 2P$

- d) Based on the Supply and Demand Equations, what are the equilibriating values for price and quantity for this market?
- $Q_D^{US} = Q_S^{US}$ 5P-5=16-2P $Q_D^{US}=Q^*=5(3)-5=10$ 7P = 21

 $P^{*} = 3$

Now suppose that there is also a demand market for Grits in Canada represented by the following schedule:

Price	$Quantity_D^C$	
\$4	12	
\$5	9	

e) What is the Demand Equation for the Canadian market for Grits?

Price	$Quantity_D^C$	
\$4	12	
\$5	9	
\$6	6	
\$7	3	
\$8	0	

 $P = 8 - \frac{1}{3} Q_D^C$ Inverse Demand

 $\frac{1}{3}Q_D^C = 8 - P$ $Q_D^C = 24 - 3P$ Demand Equation f) Provide an Aggregate Demand Equation for the North American market for Grits by summing the Canadian and US Demand Equations.

$$Q_D^C = 24 - 3P$$

$$Q_D^{US} = 16 - 2P$$

$$Q_D^{US} + Q_D^C = 16 - 2P + 24 - 3P$$

$$Q_D = 40 - 5P$$

g) Show how you would confirm that this equation is accurate by forming an Aggregate Demand Schedule then forming an Aggregate Demand Equation based on that schedule.

Price	$Quantity_S^{US}$	$Quantity_D^{US}$ +	$Quantity_D^C$	$= Quantity_D$
\$1	0	14	21	35
\$2	5	12	18	30
\$3	10	10	15	25
\$4	15	8	12	20
\$5	20	6	9	15
\$6	25	4	6	10
\$7	30	2	3	5
\$8	35	0	0	0

 $P = 8 - \frac{1}{5}Q_D$ $\frac{1}{5}Q_D = 8 - P$ $Q_D 40 - 5P$ which is the Demand Equation and is the same found above

h) What are the equalibriating values for price and quantity for the North American Market?

$$Q_D = Q_S$$

$$40 - 5P = 5P - 5$$

$$10P = 45$$

$$P^* = 4\frac{1}{2}$$

$$Q_S = Q^* = 5P - 5$$

 $Q^* = 5\left(4\frac{1}{2}\right) - 5$ $Q^* = 22\frac{1}{2} - 5 = 17\frac{1}{2}$ which matches up with a visual observation of the equilibrating values from the schedule above

i) What are the quantities demanded by the US and Canadian markets and how do these relate to the aggregate demand quantity?

At a price for the North American market of \$4½ we can determine the quantities the US and Canada will each demand by plugging that price into each market's demand equation:

$$Q_D^C = 24 - 3P$$

$$Q_D^C = 24 - 3\left(4\frac{1}{2}\right) = 10\frac{1}{2}$$

$$Q_D^{US} = 16 - 2P$$

$$Q_D^{US} = 16 - 2\left(4\frac{1}{2}\right) = 7$$

$$Q_D^C + Q_D^{US} = 17\frac{1}{2}$$

This reconciles nicely with the Q* for the North American market since

$$Q_D^C + Q_D^{US} = Q_D^{NA} = Q^* = 17\frac{1}{2}$$