Elasticity of Demand ${ }^{1}$

In the In-Class Problem on Evaluating Economic Models we considered a system of two equations for a particular labor market and asserted that we could identify several outcomes from those equations; one of which was own wage elasticity of demand. So let's continue on with that same system of equations and look more closely at elasticity. Assume we have a labor market for engineers parameterized by two equations, W is monthly wages in $\$ 1,000$'s and L is number of engineers:
$L_{S}=12 W-120$
$L_{D}=60-3 W$
These yield a labor market model with the values shown:

And also yields the following table:

W	$L_{S}=12 W-120$	$L_{D}=60-3 W$
8	-24	36
9	-12	33
10	0	30
11	12	27
12	24	24
13	36	21
14	48	18
15	60	15
16	72	12
17	84	9

[^0]a) What is the own wage elasticity of demand when wages change from $\$ 12$ to $\$ 15$?
$\eta=\frac{\% \Delta L}{\% \Delta W}=\frac{\frac{L_{2}-L_{1}}{L_{1}}}{\frac{W_{2}-W_{1}}{W_{1}}} \quad$ Simple elasticity formula
We already know that $W_{1}=12, L_{1}=24$ and we're given $W_{2}=15$, so we need to find L_{2} via the L_{D} equation, which we already calculated in part d):
$L_{D}=60-3(15)=15=L_{2}$
$\eta=\frac{\% \Delta L}{\% \Delta W}=\frac{\frac{15-24}{\frac{24}{}}}{\frac{15-12}{12}}=\frac{-\frac{9}{24}}{\frac{3}{12}}=\left(-\frac{9}{24}\right)\left(\frac{12}{3}\right)=-\frac{108}{72}=-1.5>|-1|$
So, we see that this own wage elasticity of demand is elastic, but not hugely so (it is relatively inelastic compared to elasticities of $-2,-3,-4$, etc), which doesn't really surprise us given that engineers are highly skilled and not easily substituted by other forms of labor.
b) Does the above value differ when using the Mid-Point formula?
$\eta=\frac{\% \Delta L}{\% \Delta W}=\frac{\frac{L_{2}-L_{1}}{\left(L_{2}+L_{1}\right) / 2}}{\frac{W_{2}-W_{1}}{\left(W_{2}+W_{1}\right) / 2}} \quad$ Mid-Point elasticity formula
$\frac{\frac{15-24}{(15+24) / 2}}{\frac{15-12}{(15+12) / 2}}=\frac{-\frac{9}{19.5}}{\frac{3}{13.5}}=\left(-\frac{9}{19.5}\right)\left(\frac{13.5}{3}\right)=-\frac{121.5}{58.5}=-2.07>|-1|$
Which is still elastic, but with a much higher coefficient.
c) What if there was a dramatic change in wage from $\$ \mathbf{1 1}$ to $\$ 19$, might that change either of the two formula's outcomes?
$W_{1}=\$ 11, \quad W_{2}=\$ 19, \quad L_{1}=L_{D}=60-3(11)=27, \quad L_{2}=L_{D}=60-3(19)=3$

Simple Formula: $\frac{\frac{3-27}{27}}{\frac{19-11}{11}}=\frac{-\frac{24}{27}}{\frac{8}{11}}=\left(-\frac{24}{27}\right)\left(\frac{11}{8}\right)=-\frac{264}{216}=-1.22>|-1|$

Mid-point Formula: $\frac{\frac{3-27}{(3+27 / 2}}{\frac{19-11}{(19+11) / 2}}=\frac{-\frac{24}{15}}{\frac{8}{15}}=\left(-\frac{24}{15}\right)\left(\frac{15}{8}\right)=-\frac{24}{8}=-3.00>|-1|$
Yes, the values change, but they are still representing an elastic own wage elasticity of demand.

[^0]: ${ }^{1}$ This In-Class Problem is intended to present an abbreviated discussion of the included economic concepts and is not intended to be a full or complete representation of them or the underlying economic foundations from which they are built.
 ${ }^{2}$ This problem was developed by Rick Haskell (rick.haskell@utah.edu), Ph.D. Student, Department of Economics, College of Social and Behavioral Sciences, The University of Utah, Salt Lake City, Utah (2014).

