Time Value of Money Equations BUSI 101B

Present Value Equation - simple	For use with one economic exchange	$PV = \frac{\beta_t}{(1+r)^t}$
	Solving for r	$r = \sqrt[t]{\frac{\beta_t}{PV}} - 1 = \left(\frac{\beta_t}{PV}\right)^{\frac{1}{t}} - 1$
	Solving for t	$t = \frac{ln\left(\frac{\beta_t}{PV}\right)}{ln(1+r)}$
	Solving for β_t	$\beta_t = PV x (1+r)^t$
Future Value – simple	For use with one economic exchange (notice similarity to solution for β_{t}	$FV = PV(1+r)^t$
Present Value Equation – generalized	For use with multiple economic exchanges	$PV = \sum \frac{\beta_t}{(1+r)^t}$
Present Value Annuity	For use with constant payment and rate, with specified periods of time	$PV = PMT\left[\frac{1 - \frac{1}{(1+r)^t}}{r}\right]$
	Solving for PMT	$PMT = \frac{PV x r}{1 - \frac{1}{(1+r)^t}}$
	Solving for t	$t = \frac{ln\left(\frac{1}{1 - \frac{PV x r}{PMT}}\right)}{\ln(1+r)}$
Future Value Annuity	For use with constant payment and rate, with specified periods of time	$FV = PMT\left[\frac{(1+r)^t - 1}{r}\right]$
	Solving for PMT	$PMT = \frac{FV \ x \ r}{(1+r)^t - 1}$
Effective Annual Rate		$EAR = \left[1 + \frac{APR}{m}\right]^m - 1$
Annual Percentage Rate		$APR = m \left[(1 + EAR)^{\frac{1}{m}} - 1 \right]$