Valuation Model Quick Sheet

Dividend Yield Model (NOPLAT augmented)	Reflects valuation based on income variable, time, and discount factor	$Value_{DG} = \sum \frac{NOPLAT_t}{(1+WACC)^t} + \frac{\frac{NOPLAT_1}{WACC-g}}{(1+WACC)^t}$
Key Value Driver Model	Reflects valuation based on income Cash Flows, time and discount factors (WACC or r), FCF or NOPLAT in the explicit period and NOPLAT, ROIC, g, & discount factor in the continuation period	$\begin{aligned} & \textbf{Value}_{\textbf{KVD/FCF}} = \sum \frac{FCF_t}{(1+WACC)^t} + \frac{\frac{NOPLAT_1\left(1 - \frac{g}{ROIC}\right)}{WACC - g}}{(1+WACC)^t} \\ & \textbf{Value}_{\textbf{KVD/NOPLAT}} = \sum \frac{NOPLAT_t}{(1+WACC)^t} + \frac{\frac{NOPLAT_1\left(1 - \frac{g}{ROIC}\right)}{WACC - g}}{(1+WACC)^t} \end{aligned}$
Free Cash Flow Model	Reflects valuation based on Free Cash Flow, time, and discount factor	$Value_{FCF} = \sum \frac{FCF_i}{(1 + WACC)^t} + \frac{\frac{FCF_1}{(WACC - g)}}{(1 + WACC)^t}$
Forward Multiple Model (Free Cash Flow)	Reflects valuation based on income variable (FCF shown) time, and discount factor with the continuation value being a function of a valuation multiple (FMM = EV/EBIT shown)	Value _{FCF} = $\sum \frac{FCF_t}{(1+WACC)^t} + \frac{EBIT_1 \times FMM}{(1+WACC)^t}$
Economic Profit Model	Reflects valuation based on Economic Profit, time, and discount factor	$Value_{Econ\pi} = IC_0 + \sum_{} \frac{\mathit{IC}_{t-1}(\mathit{ROIC-WACC})}{(1+\mathit{WACC})^t} + \frac{\frac{\mathit{IC}_0 \ (\mathit{ROIC}_1 - \mathit{WACC}_1)}{\mathit{WACC}_1 - \mathit{g}}}{(1+\mathit{WACC})^t}$
Adjusted Present Value Model	Reflects valuation based on Free Cash Flow & the Tax Shield, time, and discount factor Allows for changes in value as a function of changing capital structures	$\begin{aligned} & \textbf{Value}_{\text{APV}} = V_{FCF} + V_{TAX} \text{ in which } V_{FCF} = PV_{DCF(FCF)} + \\ & PV_{CV(FCF)}, \text{PV}_{\text{DCF(FCF)}} = \sum_{t} \frac{\text{FCF}_i}{(1+\text{k}_{\text{u}})^t}, \text{PV}_{\text{CV(FCF)}} = \frac{\frac{FCF_1}{(k_u-g)}}{(1+k_u)^t} \text{ and} \\ & V_{TAX} = PV_{DCF(TAX)} + PV_{CV(TAX)} \text{ in which} \end{aligned}$
		$PV_{DCF(TAX)} = \sum \frac{\text{Tax Shiel} d_i}{(1 + k_{tax})^t} \text{ and } PV_{CV(TAX)} = \frac{\frac{\text{Tax Shield}_1}{(k_{tax} - g)}}{(1 + k_{tax})^t}, \text{ resulting in}$

 $\mathbf{Value_{APV}} = \sum \frac{\text{FCF}_i}{(1+k_{\text{u}})^t} + \ \frac{\frac{\text{FCF}_1}{(k_{\text{u}}-g)}}{(1+k_{\text{u}})^t} + \sum \frac{\text{Tax Shield}_i}{(1+k_{\text{tax}})^t} + \ \frac{\frac{\text{Tax Shield}_1}{(k_{\text{tax}}-g)}}{(1+k_{\text{tax}})^t}$